Лекции по физике

Математическая физика

Примеры решения задач
Конспекты
Справочник по физике

Методика решения задач
по электротехнике

Основы электротехники
Методические указания
по решению
Основы электроники
 

Заряд и массовое число ядра.

Зарядом ядра является величина Zе, где е – заряд протона, Z – порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре.

В настоящее время известны ядра с Z от Z = 1 до Z = 107. Для всех ядер, кроме 11Н; 23Н и некоторых других нейтроннодефицитных ядер N ³ Z, где N – число нейтронов в ядре. Для мелких ядер N/Z » 1; для ядер химических элементов, расположенных в конце периодической системы, N/Z » 1,6.

Число нуклонов в ядре А = N + Z называется массовым числом. Нуклонам (протону и нейтрону) приписывают массовое число, равное единице, электрону – нулевое значение А.

Ядро химического элемента Х обозначается ZAX, где Х – символ химического элемента, Z – атомный номер (число протонов в ядре), А – массовое число (число нуклонов в ядре).

Изотопы и изобары.

Атомные ядра с одинаковым числом нуклонов, т.е. массовым числом А и разными числами протонов Z и нейтронов N называются изобарами.

Пример: 1840Ar, 2040Ca.

Изотопы – разновидности данного химического элемента, различаются по массе ядра, т.е. ядра с одинаковыми Z, но различными А.

Обладая одинаковыми зарядами ядер Z, но различаясь число нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства, и занимают одно и то же место в периодической системе.

Примеры: водород имеет три изотопа: 11Н – протий, 12Н – дейтерий, 13Н – тритий. Протий и дейтерий стабильны, тритий – радиоактивен; Кислород имеет три стабильных изотопа: 816О, 812О, 818О; у олова 10 и т.д.

В природе встречаются элементы с атомным номеров Z от 1 до 92, исключая технеций (Tc, Z=43) и прометий (Pm, Z = 64). Остальные трансурановые (т.е. зауриновые) элементы (93107) были получены искусственным путем.

Стабильные изотопы встречаются только у элементов с Z £ 83.

Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов.

Первые экспериментальные данные о существовании изотопов были получены в 1906 – 10 гг. при изучении свойств радиоактивных элементов. Термин "изотоп" предложен английским ученым Ф. Содди в 1910 г.

Ядра с одинаковым числом нейтронов N называются изотопами (613С, 714N).

Изомерами называются радиоактивные ядра с одинаковыми Z и А, отличающиеся периодом полураспада,.

В настоящее время известно приблизительно 1500 ядер, отличающихся либо Z, либо А, либо тем и другим.

Ядерные силы.

Ядерные силы – силы, связывающие нуклоны в ядре. Ядерные силы оно из проявлений сильных взаимодействий. Это взаимодействие можно описать с помощью поля ядерных сил.

Особенности ядерных сил:

ядерные силы являются короткодействующими. Их радиус действия имеет порядок 1015 м. На расстояниях существенно меньших 1015, притяжение нуклонов сменяется отталкиванием;

сильное взаимодействие не зависит от заряда нуклонов. Ядерные силы, действующие между двумя протонами, протоном и нейтроном и двумя нейтронами, имеют одинаковую величину, это свойство называется зарядовой независимостью ядерных сил;

ядерные силы зависят от взаимной ориентации спинов нуклонов. Так, например, нейтрон и протон удерживаются вместе, образуя ядро дейтрона только в том случае, если их спины параллельны друг другу;

ядерные силы не являются центральными. Их нельзя представлять направленными вдоль прямой, соединяющей центры взаимодействующих нуклонов. Нецентральность ядерных сил вытекает, в частности, из того факта, что они зависят от ориентации спинов нуклонов;

ядерные силы обладают свойством насыщения (это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом нуклонов). Насыщение проявляется в том. Что удельная энергия связи нуклонов в ядре при увеличении числа нуклонов не растет. А остается примерно постоянной.

Энергия связи ядра.

Энергия связи ядра (Есв) – это энергия, которую необходимо затрать, чтобы расцепить ядро на отдельные нуклоны.

Из закона сохранения энергии следует, что при образовании ядра должна выделиться такая же энергия, какую нужно затрать при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергия в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше. Чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Есв – энергия, выделившаяся при образовании ядра, то соответствующая ей масса: Dm = Есв / с2 – называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Если ядра с массой Мя образовано из Z протонов с массой mр и из (А – Z) нейтронов с массой mn, то

D m = Zmp + (A – Z) * mn – Мя.

Вместо массы Мя ядра величину D m можно выразить через атомную массу Ма:

D m = ZmH + (A – Z) – Ма, где mH – масса атома водорода.

При практическом вычислении D m массы всех частиц и атомов выражаются в а.е.м..

Дефект массы служит мерой энергии связи ядра: Есв = D m * с2 = [ Zmp + (A – Z)mn – Мя] * с2.

Одной атомной единице массы соответствует атомная единица энергии (а.е.э.).

Удельной энергией связи ядра (eсв) называется энергия связи, приходящаяся на один нуклон: eсв = Есв / А.

Величина eсв составляет в среднем 8 МэВ/нуклон.

На рисунке приведена кривая зависимости удельной энергии связи от массового числа А, характеризующая различную прочность связей нуклонов в ядрах разных химических элементов. Ядра химических элементов в средней части периодической системы 28 < А < 138, т.е. от 1428 Si до 50138Ba, наиболее прочны. В этих ядрах eсв близка к 8,7 МэВ/нуклон. Тяжелые и легкие ядра менее устойчивы. Это значит, что энергетически выгодны следующие процессы: деление тяжелых ядер на более легкие; слияние легких ядер друг с другом в более тяжелые. При обоих процессах выделяется огромное количество энергии.

На главную