Лекции по физике

Математическая физика

Примеры решения задач
Конспекты
Справочник по физике

Методика решения задач
по электротехнике

Основы электротехники
Методические указания
по решению
Основы электроники
 

Простешая теория грозы. 

 Дождь, как известно, обусловлен тем, что вертикальные потоки нагретого влажного воздуха переносят влагу в верхние слои атмосферы, где водяные пары конденсируются в мельчайшие капельки. Током воздуха капельки увлекаются вверх, постепенно увеличиваясь в своих размерах. Объем (вес) капельки растет пропорционально кубу ее радиуса, тогда как подъемная сила воздушного потока пропорциональна всего лишь квадрату радиуса капли. Поэтому наступает момент, когда капля перестает подниматься и начинает падать. При падении капли образуют целый поток, который выталкивает перед собой холодный воздух из верхних слоев атмосферы. Когда капли достигают поверхности Земли, образуется дождь. Началу дождя предшествует холодный вихрь. Возникновение же грозы зависит от того, переносят капли электрический заряд или не переносят. Описание механизма переноса заряда предложено американским ученым Вильямсом. Согласно его гипотезе все определяется структурой грозового облака. Полеты самолетов внутрь таких облаков показали, 

pic33

Рис.33. Структура грозового облака.

что разные части облака несут разный заряд (см. рис.33). Нижний слой тучи, как правило, несет отрицательный заряд, однако в середине слоя существует область положительного заряда. Эта область – своебразное сердце грозы. Существующее вокруг ее электрическое поле ионизирует окружающий воздух, постоянно порождая положительные и отрицательные заряды.Дождевые капли, двигаясь к Земле, поляризуются. Земля несет отрицательный заряд, поэтому на нижней части капли возникает положительный заряд. Увеличенное изображение капли приведено в правой части рисунка. При движении капли вниз – ее нижняя часть положительна, и она притягивает отрицательные

 ионы, тогда как положительные ионы отталкиваются. Верхняя же часть капли оказывает на ионы меньшее влияние.В результате капли притягивают отрицательные тоны и приобретают отрицательный заряд. Положительный же заряд переносится в верхнюю часть тучи и постепенно переходит в ионосферу. Накопление заряда в различных частях грозового облака приводит к появлению огромной разности потенциалов, достигающей 100 млн Вольт. Эта разность потенциалов может образовываться как между различными облаками, так и между облаком и земной поверхностью. Рассмотрим второй случай. По мере накопления заряда в нижней части облака вблизи его нижней кромки образуется электрическое поле, которое ионизирует воздух. Поле различно в разных точках, поэтому и степень поляризации будет различной. Там, где воздух ионизируется полностью, образуется новое состояние вещества – плазма. Плазма начинает светиться и для уменьшения потерь энергии на излучение стремится образовать шарообразную форму. Внешне это выглядит так: из тучи внезапно вываливается небольшой светящийся комок, получивший название белого лидера, и устремляется к Земле. Скорость его движения достигает 50 000 км/сек. Но лидер двигается с остановками, во время которых может произойти его деление. Движение лидера подготавливает канал для основного разряда. Если лидер делится, то возможно ветвление разряда. Когда до Земли остается около 100 метров, с земной поверхности навстречу лидеру поднимается заряд, стремящийся двигаться вдоль острых высоких предметов. При смыкании лидера с этим зарядом образуется канал, по которому отрицательный заряд попадает на Землю. Образуется гигантская искра, но длительность этого искрового разряда мала. Через доли секунды из тучи выходит новый комок – так называемый темный лидер. Он с большой скоростью и без остановки устремляется к Земле по подготовленному каналу. Вслед за ним идет основной разряд. Искра возникает снова. Темный лидер может образовываться несколько раз, вызывая несколько ударов молнии ( рекорд – 42 раза).

 Каждый удар молнии переносит до 40 Кулонов, но отрицательный заряд не удерживается на Земле. Между земной поверхностью и ионосферой существует разность потенциалов около 400 киловольт, поэтому в атмосфере постоянно идет ток, направленный вверх. Его плотность мала – несколько микроампер на кв. метр ( 1 мкА = 10 –6 А), но общее значение тока достигает 1800 Ампер. Мощность, развиваемая в такой цепи, превышает 700 Мегаватт. Грозы лишь компенсируют утечку заряда. Ежесекундно на Земле происходит около 300 гроз. Средний разрядный ток в них также равен 1800 Ампер, обеспечивая неизменность заряда Земли. 

Теория Максвелла.

 Рассмотрим проводящий виток, помещенный в изменяющееся магнитное поле. По за

pic34

Рис.34. Направление

индукционного тока.

кону Фарадея в витке возникает ЭДС индукции. Направление индукционного тока таково, что он своим действием препятствует изменению магнитного поля. Если внешнее магнитное поле возрастает, его изменение DВ направлено по полю (см. рис.34), и напрвление индукционного тока должно быть таким, чтобы магнитный момент витка Iинд S был нап равлен против поля В. Как уже указывалось (§ 64) величина ЭДС индукции определяется выражением

 E = ; Ф = .

Если виток не изменяет своей формы, то знак производной можно внести под знак интеграла. Тогда получим:

 E = ,

где наклонные  означают частную производную (предполагается, что значения В могут зависить от времени и координат).

Согласно своему определению ЭДС характеризует работу, совершаемую стороннми силами по всему замкнутому контуру (витку), т.е. E = , где Е представляет собой напряженность сторонних сил, создающих индукционный ток. Виток замкнут и однороден, поэтому силовые линии электрического поля тоже должны быть замкнутыми, т.е. индуцированное в проводнике электрическое поле является вихревым. Максвелл предположил, что наличие проводника не является обязательным: силовые линии электрического поля останутся замкнутыми и в свободном пространстве. На основании этого он сделал вывод, что всякое изменяющееся во времени магнитное поле порждает вокруг себя вихревое электрическое поле. Это положение называют первой гипотезой Максвелла, Закон Фарадея теперь записывается так:

 . ( I )

 Кроме этого существует второе положеие теории Максвелла, которое вытекает из рассмотрения теоремы о циркуляции магнитного поля. Как было показано, циркуляция магнитного поля имеет следующий вид:

 .

pic35

Рис.35. К выводу теоремы о

 полном токе. 

Это значит, что любое магнитное поле порождается токами. При рассмотрении переменного тока в цепи, содержащей конденсатор, можно было заметить, что линии тока прерываются на его пластинах  в пространстве между пластинами ток отсутствует (см. рис.35). Тогда оказывается, что выбирая контур интегрирования L внутри этой области, можно нарушить теорему о циркуляции. Максвелл предоложил, что теорема о циркуляции векто

ра магнитной индукции остается справедливой и для контура L за счет того, что в пространстве между пластинами также имеется некий «волшебный» ток Iволш , причем полный ток в цепи складывается из тока проводимости I пров и этого «волшебного» тока,т.е.
.

В проводниках I пров = Iполн , а в пространстве между пластинами Iполн = Iволш . Нетрудно видеть, что при этих условиях теорема о циркуляции справедлива везде.

 Обратимся к рассмотрению «волшебного тока» внутри пластин конденсатора. Мы знаем, что ток I пров =dQ/dt. На конденсаторе Q = Ss (s плотность поверхностных зарядов, а S – площадь пластин конденсатора). Напряженность электрического поля внутри конденсатора равна E = s/e0 или D0 = s , где D0 = e0 E – вектор электрического смещения. С учетом этого запишем

 

В то же время очевидно, что I пров = Iволш, поэтому последний ток Максвелл назвал током смещения. Теперь теорема о циркуляции принимает новый вид, где под знаком суммы стоит полный ток Iполн:

 .

Для проводников произвольного сечения и для проиэвольной формы пластин конденсатора токи выражаются через соответствующее суммирование плотности токов:

 Iпров = ; I смещ =  ,

так что теорема о полном токе приобретает следующий вид:

 . (II)

Если проводники отсутствуют, ток проводимости равен нулю, и уравнение (II) имеет вид:

 . (III)

Таким образом, второе положение теории Максвелла может быть сформулировано так:

Всякое изменяющееся во времени электрическое поле порождает вокруг себя магнитное вихревре поле.

 Уравнения (I) и (II) называются уравнениями Максвелла. Вместе с уравнениями

 и .

 Рис.36. К вычислению цир

куляций для векторов Е и В. 

 они составляют так называемую систему уравнений Мак

свелла, полностью описывающую свойства электрическо

го и магнитного полей.

 

На главную