Лекции по физике

Постоянное магнитное поле.

Закон Ампера.

pic17

Рис.17. Взаимодействие двух

  элементов тока.

Опыты показывают, что два элемента тока взаимодействуют друг с другом. Принятые представления заставляют нас предположить, что это взаимодействие осуществляется посредством поля. Это поле названо магнитным. Изуче-ние свойств этого поля логично бы было проводить по аналогии с электростатическимполем, однако до настоя-щего времени магнитных «зарядов» не обнаружено. При-нято считать, что магнитное поле всегда создается движу-щимися зарядами, т.е. током. Бесконечно малый отрезок проводника, по которому проходит ток, принято называть

элементом тока. Ампером было установлено, что величина сил взаимодействия двух элементов определяется выражением:

 ,

где смысл принятых обозначений ясен из рис.17 и 18. Величина k как и прежде введена из соображений размерности. В системе СИ она равна m0 /4p; значение постоянной m0 , которую принято называть магнитной постоянной вакуума, записывается так:

 m0 = 4p ´ 10 –7 .

Для определения силы как вектора закон Ампера должен быть изменен так, чтобы справа стояло векторное произведение:

 .

По аналогии с электростатическим полем для характеристики магнитного поля можно ввести силовую величину, отнесенную к единичному элементу тока. В теории магнитизма эту величину принято называть магнитной индукцией, точнее вектором магнитной индукции. Тогда закон Ампера для произвольного элемента тока I2 dl2 может быть записан как

 dF2 = I2 [dl2 dB], dB = dl1sina1 , dB = k [dl1,r12] .

Это определение как модуля, так и самого вектора dB носит название закона Био-Савара-Лапласа.

Рис.18. Правило право-го винта.

Однако для установления единиц измерения величины макро-скопического вектора B, его удобнее определить несколько иным способом. Пусть исследуемое магнитное поле создается системой проводников, а для измерения силы используется в качестве элемента тока короткий жесткий проводник, соеди-ненный с источником тока гибкими проводами. Сила, действу-ющая на пробный элемент, зависит от его ориентации в прост-ранстве. В каждой точке поля существует физически выделенное направление В, которое замечательно тем, что, во-первых, модуль действующей силы пропорционален синусу угла между этим направлением и направлением элемента тока, и, во-вторых, направление силы связано с направлением элемента тока и физи-

чески выделенным направлением В известным правилом право-

го винта:если вращать вектор dl по кратчайшему углу в сторону к физически выделенному направлению, то движение оси винта покажет направление действия силы dF = BIdlsina. В векторной записи 

 dF = I[dl B].

Сила максимальна, когда dl перпендикулярно направлению В. В этом случае В определя-ется как:

  .

 Отсюда единица измерения магнитной индукции в системе СИ, называемая тесла, определяется как 1Н/ (1A´1M).

 Магнитное поле можно наглядно изобразить с помощью силовых линий, проводя их по тем же правилам, чио и в электростатике, но характер этих линий – другой.

Как уже отмечалось,магнитных зарядов не существует, поэтому свойства силовых линий магнитного поля отличаются от свойств электростатического поля. Из следствия теоремы Гаусса вытекает, что поток вектора В через любую замкнутую поверхность должен равняться нулю, т.е. силовые линии магнитной индукции непрерывны, и

 .

Теоретический расчет величины В для конкретной конфигурации проводников произво-дится на основании закона Био-Савара-Лапласа с использованием принципа суперпозиции

, где суммирование произодится по всем проводникам, образующих данную систему.

На главную