Лекции по физике

Математическая физика

Примеры решения задач
Конспекты
Справочник по физике

Методика решения задач
по электротехнике

Основы электротехники
Методические указания
по решению
Основы электроники
 

Основы зонной теории.

 До сих пор развитие наших представлений об электричестве происходило достаточно последовательно с использованием довольно простых моделей. Лишь в какой-то момент было стыдливо использовано понятие носителей с зарядом q0 , хотя тут же оговаривалось, что в действительности надо рассматривать электроны, которые ответственны за проводимость металлов. Однако электроны являются довольно своеобразным микроско-пическими объектами, которые плохо подчиняются законам классической механики. Более того, их свойства часто описываются лишь в представлениях квантовой теории и теории ве-роятности.

 Наиболее известным следствием квантовомеханической теории является описание свойств электронов с помощью квантовых чисел: n, l, m и s, где

 n – главное квантовое число, характеризующее энергию электрона,

 l, - орбитальное квантовое число, определяющее форму орбиты, 

 m – магнитное квантовое число, связанное с оринтацией орбиты,

 s – спиновое число, определяющее собственный момент импульса электрона.

Первые три квантовых числа могут принимать только целочисленные значения –1, 2…и т.д, а s – только два значения - ± ½, и одному набору чисел n, l и m соответствуют два электрона с противоположно направленными спинами.

 Достаточно известным является и так называемый принцип Паули: в атомах не бывает двух электронов с одинаковыми квантовыми числами.

 Из этих двух положений следует, что энергия электронов может принимать только определенные дискретные значения так, что по мере увеличения числа электронов в атоме внешние электроны даже при температуре 0 К обладают конечной энергией.

pic15

Рис.15. Схема расположения

 зон.

В твердых телах внешние электроны вступают во вза-имодействие с соседними атомами, в результате чего их энергия немного изменяется, т.к. энергия этого взаимо-действия значительно меньше энергии электронов в атоме. Однако дискретность уровней сохраняется. Взаи-модействие электронов с соседними атомами означает, что эти ” внешние” электроны теперь принадлежат как бы всем атомам. Поэтому дискретный энергетический уро-вень, который соответствовал этим электронам в изоли-рованном атоме теперь ”расплывается“ в целый набор близко расположенных “подуровней”. Их количество определяется числом атомов, т.е. в одной грамм – молекуле вещества образуется 6,023×1023 подуровней. Об-разовавшийся набор принято называть зоной.

 Самые внешние электроны образуют зону проводимости, а следующему ниже-лежащему уровню соответствует валентная зона (см. рис.15). Между зоной проводимости и валентной зоной может располагаться запрещенная зона, т.е. набор значений энергии, приобретение которых электронами в данном веществе оказывается невозможным. Теория, оперирующая понятиями зоны, получила название зонной. С точки зрения зонной теории вещества разделяются на три класса: проводники, изоляторы и полупроводники. Принадлежность конкретного вещества к тому или иному классу определяется как расположением перечисленных зон, так и степенью их заполнения. Здесь сразу надо отметить, что валентная зона для простоты считается полностью заполненной. Если каждый атом вещества отдает в зону проводимости один электрон, то зона оказывается заполненной наполовину – на каждом уровне размещаются два электрона с противоположными спинами. Под действием внешнего электрическогополя электроны приобретают дополнительную энергию и переходят на свободные вышележащие подуровни. Может случиться и так, что зона проводимости – пуста, но запрещенная зона отсутствует, и под действием поля электроны из валентной зоны переходят в зону проводимости. В обоих случаях вещества будут проводить электрический ток. Если же в веществе зона проводимости пуста, а валентная зона отделена от нее достаточно широкой запрещенной зоной значений энергии, то такое вещество является изолятором. Нужны крайне высокие (несколько десятков или даже сотен киловольт) значения внешнего напряжения, чтобы электроны материала оказались бы переброшены через запрещенную зону. Наконец существуют элементы (гер-маний и кремний), у которых запрещенная зона довольно узкая, и энергии теплового движения оказывается достатлчно, чтобы электроны из валентной зоны перебрасывались бы в пустую зону проводимости. При комнатных температурах таких электронов находится сравнительно мало, количество носителей в зоне проводимости незначительно по срав-нению с металлами, и такие вещества получили название полупроводников.

 Указанный тип проводимости в полупроводниках называется собственной проводи-мостью. Он наблюдается только в очень чистых материалах. Обычно же любой полупро-водник содержит небольшое (примерно один атом на миллион) количество примесных атомов. Поскольку атомов примеси мало, то они не взаимодействуют между собой, и их энергетические уровни остаются нерасщепленнвми. Примесные энергетические уровни мо-гут быть как пустыми, так и заполненными. Если такой заполенный примесный уровень располагается в запрещенной зоне чуть ниже зоны проводимости, то под действием тепло-вых возбуждений  электроны с этого уровня могут переходить в зону проводимости. Если же пустой уровень находится чуть выше валентной зоны, то электроны из этой зоны могут быть переброшены на вакантный примесный уровень так, что в валентной зоне образуется «дырка», способная перемещаться от одного атома к другому, создавая «дырочную» прово-димость. Возникающая в обоих случаях проводимость называется примесной. При этом электронная примесная проводимость получила название донорной или n – проводимости, а «дырочная» проводимость была названа акцепторной или р – проводимостью. В насто-ящее время во всех полупроводниках предпочитают использовать примесную проводи-мость.

 Комбинация полупроводников с различным типом проводимости позволили создать целый ряд кристаллических диодов и триодов, нашедших широкое применение в радио-электронной промышленности. Современные технологии позволяют пролучать на кристал-ле кремния размером в булавочную головку несколько десятков миллионов полупроводни-ковых элементов. Основным элементом любого электронного устройства стала микро-схема. Премиущества их использования очевидны: они экономичны в отношении потреб-ления энергии, малогабаритны, не боятся перегрузок и т.п. Из недостатков надо выделить два: если в микросхеме выходит из строя всего один элемент, то починить ее невозможно. Ремонт сводится к замене неисправной микросхемы, что стоит довольно дорого. Наконец, все микросхемы оказываются крайне чувствительны к воздействию проникающего излуче-ния. В условиях повышенной радиационной опасности их приходится заменять радиосхе-мами на сверхминиатюрных лампах. 

Зависимость проводимости материалов от температуры.

 Из рассмотрения проводимости металлов следует, что их сопротивление обусловле-но взаимодействием носителей с колеблющимися ионами. Поскольку с повышением температуры амплитуда тепловых колебаний увеличивается, и носители начинают чаще сталкиваться с ними, можно сделать заключение о том, что с повышением температуры сопротивление проводников должно увеличиваться. Для полупроводников же картина обратная – чем выше температура, тем больше носителей, т.е. сопротивление полупро-водников падает с повышением температуры.

 С понижеитем температуры сопротивление проводников должно уменьшаться, достигая минимума при абсолютном нуле. Однако в действительности при низких, но конечных температурах сопротивление некоторых металлов скачком падает до нуля. Это явление было открыто в 1911 г и получило название сверхпроводимости. Долгое время для его наблюдения требовались температуры, близкие к температуре жидкого гелия, и лишь срав-нительно недавно удалось повысить температуру сверхпроводящего перехода до значения 90-100 К. Сверхпроводимость стало возможным наблюдать при температуре жидкого азота. Природа возникновения сверхпроводимости может быть объяснена только в рамках кванто-вой теории.

Правила Кирхгофа.

 Для расчета сложных электрических цепей немецким ученым Кирхгофом были сформулированы эмпирические правила. Первое из них утверждает, чтодля любого узла электрической цепи сумма токов, входящих и выходящих из него, равна нулю.При этом то-

pic16

Рис.16. К правилам Кирхгофа.

кам приписывается определеннный знак: входящие и выходящие токи имеют различные знаки. Пример показан на рис.16.Второе правило касается замкнутого контура, выделенного в сложной цепи: сумма произведений токов на сопротивления, по которым они проходят, равняется сумме ЭДС, включенных в данный контур. При этом токам и ЭДС приписывается определенный знак: при за-данном направлении обхода контура положи-тель-ными берутся только те токи (и ЭДС), которые совпадают с выбранным направлением обхода кон-

тура. Так из рис.16 следует:

 

 I1 – I2 + I3 –I4 = 0,

2. I1 R1 + I2 R2 - I4 R4 + I3 R3 = E3 – E2 – E1 .

На главную