Лекции по физике

Математическая физика

Примеры решения задач
Конспекты
Справочник по физике

Методика решения задач
по электротехнике

Основы электротехники
Методические указания
по решению
Основы электроники
 

Кинематика вращательного движения.

Частным примером нормального ускорения служит центростремительное ускорение, возникающее при равномерном движении точки по окружности. Если за малый промежуток времени Dt точка успевает повернуться на угол a, то как видно из рис.5, между перемещением Dl , радиусом r , приращением Dv  и самой скоростью v можно записать следующее соотношение:

  . ( 1-18 ) 

Из этого соотношения приращение скорости Dv равно:  ( 1-19 )

Деля выражение ( 1-19 ) для приращения скорости на промежуток времени Dt, имеем: . (1- 20 )

Для случая вращательного движения полезными оказываются такие дополнительные кинематические характеристики как угловая скорость и угловое ускорение. Величина угловой скорости w определяется как отношение угла Dj, который описывает радиус-вектор точки за время Dt, т.е.

 . ( 1-21 ) 

При этом угловой скорости приписывается определенное направление, которое определяется следующим образом: направление отсчета угла определяется направлением вращения, а направление w определяется правилом правого буравчика - оно совпадает с движением оси буравчика, когда он вращается в направлении вращения материальной точки ( см. рис.6 ). Вектор углового ускорения b определяется через изменение угловой скорости вращения за время Dt.

При этом направление b совпадает с направлением w, если за время Dt происходит увеличение скорости w и направление b противоположно вектору w, если за время Dt угловая скорость уменьшается. Таким образом

  . ( 1- 22 ) 

 При вращательном движении между линейной скоростью точки, направленной по касательной к окружности вращения существует определенная взаимосвязь. Действительно

 [w r ] , ( 1-23 ) 

где квадратные скобки обозначают векторное произведение двух векторов - w и r.

Как известно, два вектора могут быть перемножены двумя способами - скалярно и векторно. Поскольку при скалярном произведении векторов получается число (скаляр), а скорость по определению - вектор, то остается только векторный способ перемножения векторов w и r. Направление векторного произведения также определяется по правилу правого буравчика: первый вектор ( в нашем случае -это вектор w ) вращается по кратчайшему направлению к второму вектору ( в нашем случае - это радиус - вектор r ); движение оси буравчика при таком вращении покажет направление векторного произведения

На главную