Лекции по физике

Математическая физика

Примеры решения задач
Конспекты
Справочник по физике

Методика решения задач
по электротехнике

Основы электротехники
Методические указания
по решению
Основы электроники
 

Энергетические соотношения в колебательных процессах.

 Для груза, совершающего гармонические колебания, значение кинетической энергии mv2/2 находится прямой подстановкой в величину кинетической энергии выражения для скорости колебательного движения, определяемой  выражением

( 8-5):

 Екин = . ( 8-13 )

Максимальное значение этой энергии, очевидно, равно

  ( 8-14 ) и достигается в момент, когда тело проходит положение равновесия. Пройдя это положение тело продолжает двигаться по инерции и вызывает деформацию пружины. При этом кинетическая энергия движущегося тела переходит в потенциальную энергию деформированной пружины Епот

 Епот = . ( 8-15 )

Максимальное значение этого вида механической энергии равно:

  . ( 8-16 )

При незатухающих колебаниях , поэтому имеет место сохранение механической энергии: . В этом случае суммарная энергия сохраняет свою величину в любой момент времени ( выражения ( 8-13 ) и ( 8-15 )):

 , ( 8-17) 

где учтено, что sin2 a + cos2 a = 1 и .

 Если колебания являются затухающими, за каждый период колебаний суммарная энергия колеблющегося тела уменьшается на величину работы против сил

трения. В этом случае колеблющееся тело или любая система, в которой происходят колебания, характеризуется так называемым качеством или добротностью системы Q, которая определяется как способность системы к превращениям одного вида механической энергии в другой (т.е. кинетической в потенциальную или наоборот). Количественно добротность определяется ( с точностью до коэффициента 2p) как отношение максимальной энергии упругой деформации (или максимальной кинетической энергии колеблющейся системы) к средней величине

потерь энергии в системе за период. Известно, что среднее значение любой переменной величины < у > за период определяется соотношением :

 < у > = .

Мгновенное значение силы вязкого трения Fтрен= bbw0A cos(w0t +j), тогда среднее значение работы < Атрен > за единицу времени против этой силы равно:

 < Атрен > =

Выразим cos2(w0t + j) через функцию двойного угла: cos2 a =(1+cos2a) и подставим его в выражение для < Атрен > :

 < Атрен > ==, ( 8-18)

 

поскольку значение второго интеграла в ( 8-18) равно нулю (среднее значение за период любой гармонической функции равно 0, т.к. эта функция половину периода положительна, а половину - отрицательна).

 Очевидно, что за весь период Т на преодоление силы трения будет затрачена энергия Wпотер = < Атрен > Т, и добротность колебательной системы может быть определена как:

  , ( 8-19)

где . Из выражения ( 8-19) видно, что добротность системы определяется ее упругими, инерционными и диссипативными свойствами. Можно сказать также, что добротность - это число, показывающее за сколько периодов колебаний вся энергия, запасенная в системе, будет превращена в работу против сил трения, т.е. в тепло.

 Как правило, добротность механических систем довольно высока. Здесь уместно вспомнить о звучании музыкальных инструментов: отдельная нота может звучать несколько секунд, хотя частота колебаний составляет несколько килогерц.

Колебания груза на пружине также могут продолжаться довольно долго, однако в последнем случае существенно заметить, все рассмотренные случаи колебаний касались движения, где изменялась одна координата, в то время как известно, что для полного описания движения точки необходимо задать три координаты. Все эти координаты считаются равноправными, поэтому, если по каким-то причинам в системе возникают колебания в двух или трех направлениях, то первоначально запасенная энергия станет равномерно распределяться между всеми направлениями колебаний; другими словами, если груз будет совершать не строго вертикальные колебания вдоль одной прямой, то его колебания затухнут быстрее.

На главную