Математическая физика Методика решения задач по электротехнике Основы электроники Начертательная геометрия На главную

Начертательная геометрия

Скрещивающиеся прямые. Если две прямые в пространстве не параллельны между собой и не пересекаются, то они скрещиваются. Точка пересечения одноименных проекций этих прямых не находятся на одной линии проекционной связи. На рис. 2.28. изображены скрещивающиеся прямые общего положения.

Рис. 2.28.

Конкурирующие точки. Определение видимости точки.


Как надо рассматривать точку пересечения одноименных проекций скрещивающихся прямых? Она представляет собой проекции двух точек, из которых одна принадлежит первой, а другая – второй из этих скрещивающихся прямых. Например, на рис точка с проекциями К2 иК1 принадлежит прямой АВ, а точка с проекциями L2 и L1 принадлежит прямой СD. Эти точки одинаково удалены от плоскости П2, но расстояние их от плоскости П1 различны: точка с проекциями L2 и L1 дальше от плоскости П1 чем точка с проекциями К2 иК1 (рис 2.29.).

Рис. 2.29.

Точки с проекциями М2, М1 и N2, N1 одинаково удалены от плоскости П1, но расстояние этих точек от плоскости П2 различны.

Точка с проекциями L2 и L1 принадлежащая прямой CD, закрывает собой точку с проекциями К2 иК1 прямой АВ по отношению к плоскости П2, соответствующее направление взгляда показано стрелкой у проекции L2. По отношению к плоскости П2 точка с проекцией N2, N1 прямой CD закрывает собой точку с проекциями М2, М1 прямой АВ; направление взгляда указано стрелкой внизу, у проекции N1.

Точки М2 ≡ N2,v K1 ≡ L1 – называются конкурирующими и с их помощью определяется видимость.

Конкурирующие точки.

Как надо рассматривать точку пересечения одноименных проекций скрещивающихся прямых? Она представляет собой проекции двух точек, из которых одна принадлежит первой, а другая – второй из этих скрещивающихся прямых. Например, на рис точка с проекциями К2 иК1 принадлежит прямой АВ, а точка с проекциями L2 и L1 принадлежит прямой СD. Эти точки одинаково удалены от плоскости П2, но расстояние их от плоскости П1 различны: точка с проекциями L2 и L1 дальше от плоскости П1 чем точка с проекциями К2 иК1 (рис 2.26.).

Рис. 2.26.

2.7. Определение видимости точки

Точки с проекциями М2, М1 и N2, N1 одинаково удалены от плоскости П1, но расстояние этих точек от плоскости П2 различны.

Точка с проекциями L2 и L1 принадлежащая прямой CD, закрывает собой точку с проекциями К2 иК1 прямой АВ по отношению к плоскости П2, соответствующее направление взгляда показано стрелкой у проекции L2. По отношению к плоскости П2 точка с проекцией N2, N1 прямой CD закрывает собой точку с проекциями М2, М1 прямой АВ; направление взгляда указано стрелкой внизу, у проекции N1.

Точки М2 ≡ N2,v K1 ≡ L1 – называются конкурирующими и с их помощью определяется видимость.

Теорема о проецировании прямого угла.

1. Если плоскость, в которой расположен некоторый угол, перпендикулярна к плоскости проекций, то он проецируется на эту плоскость проекций в виде прямой линии.

2. Если плоскость прямого угла не перпендикулярна к плоскости проекций и хотя бы одна его сторона параллельна этой плоскости, то прямой угол проецируется на нее в виде прямого же угла.

Рис. 2.30.

Положим, что сторона ВС прямого угла АВС (рис. 2.30.) параллельна плоскости проекций. В таком случае прямая СВ параллельна С1В1. Пусть вторая сторона (АС) прямого угла пересекает свою проекцию А1С1 в точке К. Проводим в плоскости проекций через точку К прямую параллельно С1В1. Прямая KL так же параллельна СВ, и угол CKL получается прямым. Согласно тереме о трех перпендикулярах угол С1KL также прямой. Следовательно, и угол А1С1В1 прямой.

Рис. 2.31.

Этой теореме о проецировании прямого угла соответствуют две обратных.

3. Если проекция плоскости угла представляет собой прямой угол, то проецируемый угол будет прямым лишь при условии, что по крайней мере одна из сторон этого угла параллельна плоскости проекций. (рис. 2.31.).

4. Если проекция некоторого угла, у которого одна сторона параллельна плоскости проекций, представляет собой прямой угол, то проецируемый угол тоже прямой.

5. Если стороны угла одинаково наклонены к плоскости проекций, то угол не может равняться проектируемому углу.