Математическая физика Методика решения задач по электротехнике Основы электроники Начертательная геометрия На главную

Начертательная геометрия

Точки проекций общего и частного положения.

Наиболее удобной для фиксирования положения геометрической фигуры в пространстве является декартова система координат, состоящая из трех взаимно перпендикулярных плоскостей:

П1 – горизонтальная плоскость проекций;

П2 – фронтальная плоскость проекций;

П3 – профильная плоскость проекций;

Ось х – ось абсцисс;

Ось у – ось ординат;

Ось z – ось аппликат;

О – начало координат.

Положительными направлениями оси считают: дял оси х – влево от начала координат, для оси у – в стороны зрителя от плоскости П2, для оси z – вверх от плоскости П1, противоположные направления осей считаются отрицательными (рис. 1.14.).

Рис. 1.14.

Плоскости проекции делят пространство на 8 частей – октантов, каждый из которых представляет собой прямоугольный треугольник, где гранями являются части плоскостей проекций, а ребрами – оси координат.

Учитывая при отсчете координат направления осей х, у, z, получим знаки координат для каждого октанта (табл. 2).

Возможны следующие случаи.

Точка расположена в пространстве. В этом случае ее зададут тремя координатами (измерениями). Все три проекции точки удалены от осей проекций (рис. 1.9.).

Точка находится на одной из плоскостей проекций – П1, П2 или П3. В этом случае ее задают двумя действующими координатами, не равными нулю. Одна проекция совпадает с самой точкой, а две другие лежат на осях. На рисунке 1.10. изображены проекции точки В (20, 0, 15), лежащей в плоскости проекций П2. В этом случае фронтальная проекция В2 совпадает с самой точкой В, горизонтальная проекция В1 лежит на оси Ох, а профильная В3 – на оси Оz.

Точка находится на одной из осей проекций – Ох, Оу, Оz. В этом случае ее задают одной действительной координатой, не равной нулю. Две проекции совпадают с самой точкой, а третья находится в точки О – начале осей проекций. На рисунке 10 изображены проекции точки С (15, 0, 0), лежащей на оси Ох. В этом случае горизонтальная С1 и фронтальная С2 проекции совпадают с самой точкой С, а профильная проекция С3 находится в точке О.

К чтению чертежа следует отнести решение таких вопросов:

а) определение третьей проекции точки по двум данным;

б) определение координат точки и ее положения относительно плоскостей проекции;

в) построение аксонометрического изображения точки по ее комплексному чертежу;

г) анализ взаимного расположения нескольких точек относительно плоскостей проекции и др.

Рис. 1.15.

На рисунке 1.15. заданы проекции точки А и В. Эти точки расположены в пространстве, так как ни одна из их координат не равна нулю. Широта точки А больше широты точки В, так как отрезок ОАх больше отрезка ОВх. Следовательно, точка А дальше отстоит от плоскости П3, чем точка В. Глубины этих точек равны вследствие равенства координат у (А1Ах = В1Вх). Из этого следует, что точки одинаково удалены от плоскости проекции П2. Высоты у точек различны. Точка В дальше от плоскости П1 на величину, равную отрезку В2В0.

Обратимость чертежа

Обратимость чертежа. Проецированием на одну плоскость проекций получается изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А1 (см. рис. 1.4.) не определяет положение самой точки в пространстве, так как неизвестно, на какое расстояние она удалена от плоскости проекций П1. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображения дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа.


проведение сертификации смк