Основы электротехники Методические указания Основы электроники Курсовая работа Лабораторные работы Основы теории цепей

Расчет узлов электрических цепей. Практикум

Усилители на микросхемах

В настоящее время многокаскадные усилители переменного тока с RC-связью выполняют на основе интегральных микросхем. Они состоят, как правило, из нескольких (не менее двух) каскадов. Полоса пропускания частот таких усилителей находится в пределах от 200 Гц до 100 кГц. Особенностью интегральных усилителей являются непосредственные (гальванические) связи между каскадами. Связь с источником сигнала и нагрузкой конденсаторная. Так как конденсаторы большой емкости трудно выполнить в интегральном исполнении, то в микросхемах предусматривают специальные выводы для подключения внешних конденсаторов и резисторов. На рис. 14.4 показаны схема интегрального усилителя (обве– дена пунктиром) и схема его включения.


Рис. 14.4

При выведенных отрицательных обратных связях коэффициент усиления напряжения   в зависимости от модификации усилителей составляет 250…800. При входном сопротивлении  = 1,5 кОм и сопротивлении нагрузки  = 5 кОм коэффициент усиления мощности может составлять (2…20)·104. Такое усиление позволяет за счет сильных общих отрицательных обратных связей обеспечить высокую стабильность коэффициента усиления мощности. При этом наибольшая выходная мощность  может достигать 1 мВт.

Усилитель на рис. 14.4 трехкаскадный, причем третий каскад выполнен на основе включения транзисторов Т3 и Т4 по схеме составного транзистора, поэтому в нем возможны общие отрицательные обратные связи.

Операционные усилители

С развитием интегральной технологии производства наиболее распространенным элементом для построения электронных устройств стал операционный усилитель. Он представляет собой высококачественный усилитель постоянного тока с дифференциальным входом, обладающий высоким коэффициентом усиления, большим входным и малым выходным сопротивлениями.

На принципиальных схемах в самом общем виде операционный усилитель обычно изображают в виде прямоугольника с двумя входными и одним выходным выводами (рис. 14.5). Один из входов усилителя, напряжение на котором усиливается с тем же знаком, называется неинвертирующим и обозначается «+». Напряжение на другом входе – инвертирующем («–») – усиливается с изменением знака на обратный. Коэффициент усиления в схеме с разомкнутой обратной связью одинаков для обоих входов операционного усилителя, причем во всем рабочем температурном диапазоне. Этого достигают выполнением всех элементов усилителя, в том числе и входных транзисторов, на одной кремниевой пластине.

Основные параметры схем, выполняемых на операционном усилителе (ОУ), удобно рассматривать, считая его идеальным, с параметрами:

1) коэффициент усиления  в схеме с разомкнутой обратной связью бесконечно большой;

2) напряжение на выходе равно нулю при нулевой разности входных напряжений;

3) входное сопротивление бесконечно большое;

4) выходное сопротивление равно нулю;

5) полоса пропускания частот бесконечна (усилитель не вносит задержки).

  Схема операционного усилителя, изображенная на рис. 14.6 называется инвертирующей схемой ОУ. Характерной особенностью ее является то, что неинвертирующий вход заземлен, а инвертирующий вход связан с выходом через сопротивление обратной связи  Для инвертирующего включения ОУ характерны перемена знака входного сигнала, а также зависимость коэффициента усиления (коэффициента передачи) только от параметров цепи обратной связи. При достаточно большом значении коэффициента усиления, даже в случае его изменения от экземпляра к экземпляру ОУ или от температуры, параметры усилителя практически не меняются. Такая схема, называемая инвертирующим повторителем входного сигнала, используется как промежуточное звено при связи источника сигнала, имеющего относительно большое внутреннее сопротивление (но меньшее, чем входное сопротивление ОУ), с низкоомным приемником.

Определим с учетом знака выходного напряжения  значение входного тока

.  (14.3)

Из этого следует, что напряжение на инвертирующем входе для данной схемы стремится к нулю. Поэтому здесь инвертирующий вход может рассматриваться как точка «кажущейся» земли.

На основе инвертирующего усилителя выполняют сумматоры, у которых с инвертирующим входом связано несколько источников сигналов со своими входными сопротивлениями (рис. 14.7).

Поскольку инвертирующий вход, называемый в данном случае «суммирующей точкой», сохраняет потенциал земли, входные токи каждого из источников не зависят друг от друга. Через элемент обратной связи  протекает сумма этих токов.

При малом переменном напряжении входного сигнала, соизмеримом с падением напряжения на открытом диоде, для его выпрямления могут применяться схемы на основе ОУ. В них практически исключается влияние падения напряжения на диоде. На рис. 14.8 представлена схема однополупериодного выпрямителя, где диод VD1 включен в цепь обратной связи.

Для схемы, показанной на рис. 14.9 а с учетом того, что потенциал точки суммирования токов за счет обратной связи совпадает с потенциалом земли, имеют место следующие зависимости

;

.  (14.4)

Таким образом, посредством этой схемы осуществляется интегрирование входного сигнала с изменением знака. Такой интегратор может применяться, для сглаживания выпрямленного напряжения. Например, подключив в схеме (рис. 14.8) параллельно резистору  конденсатор, получим выпрямитель.

Схему дифференциатора, выполняющего операцию, обратную интегрированию, т.е. дифференцирование, можно получить из предыдущей схемы, поменяв местами конденсатор и резистор (рис. 14.9 б). Для этой схемы характерны следующие

соотношения

  . (14.5)

В схеме неинвертирующего усилителя (рис. 14.10) источник входного сигнала с внутренним сопротивлением  связан с неинвертирующим входом, а инвертирующий заземлен через резистор  и имеет обратную связь через резистор .

Этот усилитель в определенном масштабе  воспроизводит на выходе входное напряжение. Достоинством его является большое входное и малое внутреннее выходное сопротивления. При = 0 усилитель превращается в повторитель входного напряжения.

Для сравнения двух сигналов используют схемы ОУ в режиме компаратора. В этих схемах для получения максимальной точности, определяемой чувствительностью схемы, петля обратной связи обычно не замыкается.

На рис. 14.11 показан компаратор, применяемый для сравнения разнополярных входных сигналов – сигнала  и опорного . Если одно напряжение

 превышает другое, то выходная часть ОУ за счет большого коэффициента усиления переходит из одного состояния насыщения в другое. Таким образом, компаратор служит для преобразования разности аналоговых входных сигналов в дискретный выходной.

Реальный ОУ отличается от рассмотренного ранее идеального наличием входных токов и выходного сопротивления, несбалансированностью обоих плеч входного дифференциального усилителя и конечным значением коэффициента усиления . Поэтому выбор параметров элементов внешних связей ОУ с другими узлами схемы связан с его электрическими параметрами. Для этого в справочной литературе приводится около 20 параметров.

14.2. Электронные генераторы

Электронным генератором называют устройство, создающее электрические колебания определенной частоты и формы и использующее для этого  энергию источника постоянного тока (напряжения).

По принципу действия генераторы бывают с внешними внутренним возбуждением. Генераторы с внутренним возбуждением (автогенераторы) возбуждаются самостоятельно (без внешнего источника). Основными характеристиками генераторов являются форма, частота и амплитуда создаваемых колебаний.

По форме колебаний генераторы подразделяются на генераторы синусоидальных колебаний и генераторы несинусоидальных (релаксационных) колебаний.

По частоте колебаний генераторы подразделяются на низкочастотные (от долей герц до 100 кГц), высокочастотные (100 кГц … 10 мГц) и сверхвысокочастотные (более 10 мГц).

Важными характеристиками являются мощность выходного сигнала, стабильность частоты и коэффициент полезного действия.

Практически большинство трансформаторов малой и средней мощности выполняют трехфазными (рис. 4.8), а больших мощностей — с учетом конкретных условий установки. Трехфазные трансформаторы изготовляют мощностью до 60 000 кВА, но уже начиная с мощности 3 х 600 = 1800 кВА допускается применять трехфазные группы трехфазных трансформаторов.

Зажимы трехфазного трансформатора размечаются в порядке чередования фаз: на стороне высшего напряжения зажимы А, В, С —

начала обмоток, X, У, Z —их концы; на стороне низшего напряжения — соответственно а, b, с и х, у, z (см. рис. 4.6г).

Основными способами соединения обмоток  трехфазного трансформатора являются соединения звездой и треугольником.

Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой, при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток; так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение. Соединение обеих обмоток звездой широко применяют для трансформа торов небольшой и средней мощности (примерно до 1800 кВА). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция  обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.

Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/Δ широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.

При трехфазной трансформации только отношение фазных напряжений U1ф/U2ф всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2, что же касается линейных напряжений, то их отношение зависит от способа

соединения обмоток трансформатора. При одинаковом способе соединения (У/У или Δ/Δ) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (У/Δи Δ/У) отношение линейных напряжений меньше или больше этого коэффициента в √3paз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.


На главный раздел сайта: Выполнение курсовой по электронике