Основы электротехники Методические указания Основы электроники Курсовая работа Лабораторные работы Основы теории цепей

Контрольная электротехнике. Методы расчета цепей

Источник ЭДС и источник тока

 При преобразовании любого вида энергии в электрическую энергию в источниках происходит за счет электродвижущей силы (ЭДС). Электродвижущая сила  характеризует действие сторонних (неэлектрических) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре она равна работе этих сил по перемещению единичного положительного заряда вдоль этого контура. Сторонние силы приводят в движение заряженные частицы внутри источника электрической энергии: генераторов, гальванических элементов и т.д. ЭДС определяется как отношение работы , совершаемой сторонними силами при переносе заряженной частицы внутри источника, к ее заряду Основой построения любого устройства, использующего цифровую информацию, являются элементы двух типов: логические и запоминающие. Логические элементы выполняют простейшие логические операции над цифровыми сигналами. Запоминающие элементы служат для хранения цифровой информации (состояния разрядов кодовой комбинации).

.

 Если = 1 Кл, то .

 Следовательно, ЭДС равна работе, совершаемой сторонними силами при переносе единицы заряда внутри источника от зажима с меньшим потенциалом к зажиму с большим потенциалом. Ее можно представить разностью потенциалов или напряжением между положительным и отрицательным зажимами источника энергии при отсутствии в нем тока.

 В замкнутой электрической цепи под действием ЭДС источника возникает ток. Цепь, в которой ток не изменяется во времени, называют цепью постоянного тока. При расчете и анализе электрических цепей источник электрической энергии представляют либо источником ЭДС, либо источником тока.

 Идеальным источником ЭДС (рис. 1.8) называют такой источник энергии, ЭДС которого не зависит от протекающего через него тока и равна ЭДС реального источника, а его внутреннее сопротивление равно нулю. На рис. 1.8 показаны условные обозначения и вольтамперная характеристика идеального источника ЭДС.

 За положительное направление ЭДС источника принимается направление возрастания потенциала внутри этого источника. Внутреннее сопротивление  показывает, что часть энергии, вырабатываемой источником, используется внутри источника. Схема замещения реального источника (0) может быть представлена в виде последовательного соединения идеального источника ЭДС и внутреннего сопротивления (рис. 1.9). Реальный источник называют источником напряжения.

Рис. 1.8

Рис. 1.9

 Ток в цепи (рис. 1.9) определяется по закону Ома:

. (1.9)

  Из последней формулы видно, что внутреннее сопротивление оказывает влияние на ток в электрической цепи.

 Напряжение на зажимах источника или на нагрузке (рис. 1.9) определяется по формуле

Рис. 1.10

.  (1.10)

 ВАХ источников электрической энергии часто называют внешними характеристиками. Внешняя характеристика реального источника описывается уравнением (1.10). Ее можно построить по данным двух опытов (рис. 1.10):

холостого хода ;

короткого замыкания.

 Источником тока называют такой идеализированный источник электрической энергии, который вырабатывает ток , не зависящий от нагрузки  цепи и равный частному от деления ЭДС реального источника на его внутреннее сопротивление:

.  (1.11)

 Чтобы обеспечить постоянство тока  независимо от нагрузки , необходимо выполнить условия: а) ; б) .

 Идеальный источник тока можно считать реальным, если внутреннее сопротивление  подключить параллельно сопротивлению нагрузки. ВАХ и условное обозначение источника тока показаны на рис. 1.11. Схема замещения реального источника представлена на рис. 1.12.

 Ток в нагрузке

.  (1.12)

Рис. 1.11

Рис. 1.12

 

Следовательно, при расчете цепей источники тока могут быть заменены источниками ЭДС и наоборот.

 Каждый из двух расчетных эквивалентов является равноценным. В дальнейшем будем использовать в основном источник ЭДС.

 Эквивалентность источников обеспечивается при равенстве напряжений при холостом ходе и равенстве токов при коротком замыкании.

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА С ОДНИМ ИСТОЧНИКОМ ПИТАНИЯ

Соединение источников и потребителей электроэнергии.

В рассмотренной ранее простейшей электрической цепи (см. рис. 1.3) генератор, электроприемник и связывающие их провода, по которым электрическая энергия передается от генератора к приемнику, соединены между собой последовательно. Этот способ соединения применяется для того, чтобы связать в общую электрическую систему разнохарактерные с энергетической точки зрения элементы цепи генераторы, электроприемники и линии передачи электрической энергии. Однородные в энергетическом отношении элементы системы, например генераторы или электроприемники, как правило, соединяются между собой параллельно. При таком способе соединения достигается относительная независимость в управлении и работе отдельных источников и потребителей электроэнергии. Между тем при последовательном соединении практически невозможно включать и отключать отдельно каждый генератор или электроприемник, а также устанавливать для любого из них требуемый режим, работы. Кроме того, при последовательном соединении приемников, например электрических ламп, перегорание одной из них влечет за собой погасание всех остальных.

Совместная параллельная работа генераторов на общую электрическую нагрузку имеет значительные преимущества в сравнении с раздельной работой каждого генератора на свою нагрузку. Во-первых, повышается надежность питания потребителей,

так как в случае аварийного отключения одного из генераторов оставшиеся в работе генераторы могут обеспечить бесперебойное электроснабжение наиболее ответственных нагрузок. Во-вторых, при параллельной работе можно в случае снижения нагрузки (например, в ночное время или в выходные дни) отключать часть генераторов, что повышает экономичность эксплуатации энергетических установок.


На главный раздел сайта: Выполнение курсовой по электротехнике