Основы электротехники Методические указания Основы электроники Курсовая работа Лабораторные работы Основы теории цепей

Контрольная электротехнике. Методы расчета цепей

Закон Ома

 В 1827 г. немецкий физик Г. Ом, проведя серию точных экспериментов, установил один из основных законов электрического тока. Он гласит: постоянный электрический ток в участке электрической цепи прямо пропорционален напряжению на этом участке.

 Закон Ома имеет различные формы записи.

 В дифференциальной форме для участка цепи без ЭДС он имеет вид

,  (1.2)

где  – удельная проводимость.

Появление импульсных устройств создало материальную базу для разработки цифровых измерительных приборов, систем передачи цифровой информации, ЭВМ. Вся эта техника осуществляет операции над цифровыми сигналами. Такие сигналы принимают лишь два значения "0" или "1". Их называют состояниями. Число состояний m = 2.

Рассмотрим прямолинейный проводник постоянного сечения s (рис. 1.6):  

.  (1.3) 

Рис. 1.6

 

 Это вторая форма записи закона Ома для участка цепи без ЭДС, которая называется интегральной. Он формулируется следующим образом: ток в проводнике равен отношению падения напряжения на участке проводника к электрическому сопротивлению участка.

 Электрическое сопротивлениепрямо пропорционально длине  и обратно пропорционально площади поперечного сечения проводника:

. (1.4)

Размерность сопротивления.

 Таким образом, сопротивление – это скалярная величина, характеризующая проводящие свойства цепи. Оно равно отношению постоянного напряжения на участке цепи к току в нем при отсутствии на участке ЭДС:

  . (1.5)

 Сопротивление – это величина, показывающая, что в данном участке цепи происходит преобразование энергии.

 Величина, обратная сопротивлению, называется проводимостью:

.  (1.6)

 Размерность проводимости – сименс (См). 1 См = 1/Ом.

 Удельное сопротивление:

 (1.7)

  Тогда

. (1.8)

 Удельное сопротивление получено экспериментально для всех материалов и приведено в справочниках.

  Обмотки реостатов и нагревательных приборов изготавливают из сплавов с большим удельным сопротивлением (нихром, фехраль и т.п.).

 Устройства, которые включают в электрическую цепь для ограничения или регулирования тока, называются резисторами или реостатами.

Рис. 1.7

 Зависимость тока резистора I от подводимого напряжения U называется его вольтамперной характеристикой (ВАХ). Если сопротивление резистора не зависит от тока, то его ВАХ представляет собой прямую линию (рис. 1.7 а), проходящую через начало координат. Такой резистор называется линейным. Резистор, ВАХ которого не является прямой линией (рис. 1.7 б), называется нелинейным. Электрические цепи, содержащие только линейные элементы, называют линейными. Если в цепи имеется хотя бы один нелинейный элемент, вся цепь называется нелинейной.

Основными единицами измерений являются: для мощности — ватт (вт), а для электрической энергии—ватт-секунда (вm-сек) или джоуль (дж). На практике чаще применяют укрупненные единицы измерении:

1 киловатт (кВт) = 1000 Вт,

1 киловатт-час (кВт ч) = 3,6*106.Ватт-сек Дж).

Рассмотрим баланс мощностей в простейшей цепи (см. рис. 1.3). Для этого умножим все члены уравнения (1 .З а) на I.

Произведение El представляет собой полную электрическую мощность Рэ, развиваемую источником. Часть этой мощности ΔРг = I2r теряется в самом источнике в виде тепла. Разность Рэ - ΔРг представляет собой мощность, отдаваемую источником во внешнюю цепь. В проводах линии также теряется в виде тепла часть мощности ΔРл = I2rл. Остальная мощность Рнагр = I2rн = Uнагр*I потребляется нагрузкой. Баланс мощностей рассмотренной цепи можно наглядно иллюстрировать энергетической диаграммой (рис. 1.5).

 

Потери мощности в источниках питания современных электроэнергетических установок относительно невелики. Мощные электрические генераторы имеют высокий к.п.д., достигающий значения 0,95 и выше.

При передаче потребителям одной и той же мощности Рнагр = Uкагр I ток, протекающий по линии, будет тем меньше, чем выше напряжение установки. Потеря мощности в линии, как известно, пропорциональна квадрату тока. В связи с этим повышение напряжения,  например в 10 раз, приводит к снижению потери мощности в линии передачи в 100 раз, и следовательно, к повышению ее экономичности. Этим объясняется использование все более высоких напряжений в электроэнергетических установках.


На главный раздел сайта: Выполнение курсовой по электротехнике