Контрольная электротехнике. Методы расчета цепей

Физика

Конспекты
Контрольная работа
Задачник
Справочник по физике

Математика

Алгебра
Контрольная по математике

Методика решения задач
по электротехнике

Основы электротехники
Методические указания
Основы электроники
Курсовая работа
Лабораторные работы
Основы теории цепей

Курсовая работа

Проектирование электропривода
Моделирование и анализ
электронных схем

Информатика

Компьютерная  безопасность

Графика

Практика выполнения
технических чертежей
Констpуктоpские документы
Начертательная геометрия

Художественная культура и искусство

Первобытное искусство и мифология
Античное искусство
Эпоха Возрождения
Архитектура периода Киевской Руси
Немецкий романтизм
Экциклопедия по искусству
Стиль в литературе и искусстве
Литература Франции

Технология фотосъемки

Цифровая камера
Экспозиция
Установка правильной экспозиции
Диафрагма и глубина резкости
Процесс получения фотографии
Технологии маскирования
Композиция
Zoom объектив
Технология съемки портрета
Перспектива
Световой спектр
Изобразительные средства и приемы
Рука художника
Старые фотографии
Жанровая фотография

Туризм

Развитие туризма
Организация туристических комплексов

Преобразование линейных электрических схем Расчет и исследование сложных электрических схем во многих случаях можно значительно облегчить за счет преобразования. Суть преобразования заключается в замене участков цепи эквивалентными, но более простыми, т.е. не вызывающими изменения напряжения и токов в остальной части цепи.

Линейные цепи постоянного тока Постоянный ток широко используется во многих отраслях техники. Его применяют в устройствах связи, приборах, электрооборудовании мобильных агрегатов и др. Совокупность источников, приемников электрической энергии и соединяющих их проводов называют электрической цепью.

Электрический ток. Плотность тока. Электрическое напряжение Направленное движение свободных заряженных частиц в проводнике под действием электрического поля называется электрическим током. Электрический ток является скалярной величиной, которая равна пределу отношению заряда к промежутку времени, когда последний стремится к нулю

Закон Ома  В 1827 г. немецкий физик Г. Ом, проведя серию точных экспериментов, установил один из основных законов электрического тока. Он гласит: постоянный электрический ток в участке электрической цепи прямо пропорционален напряжению на этом участке.

объявления индивидуалок спб

Источник ЭДС и источник тока При преобразовании любого вида энергии в электрическую энергию в источниках происходит за счет электродвижущей силы (ЭДС).

Электрическая энергия и электрическая мощность

Закон Ома для участка цепи, содержащего ЭДС

http://v-garant.ru/

Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой. Векторные диаграммы широко применяются при анализе режимов работы цепей синусоидального тока, что делает расчет цепи наглядным.

Линейные цепи синусоидального тока В электроэнергетике используют в основном переменный ток. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Основное преимущество переменного тока по сравнению с постоянным током заключается в возможности просто и с минимальными потерями преобразовывать напряжение при передаче энергии. Генераторы и двигатели переменного тока имеют более простое устройство, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

Действующее значение синусоидального тока Мгновенное значение переменного тока все время изменяется от нуля до максимального значения. Однако переменный ток, как и постоянный, измеряется в амперах. Какой же смысл мы вкладываем в термин «переменный ток»? Можно было бы характеризовать переменный ток его амплитудой.

Индуктивная катушка в цепи синусоидального тока Индуктивная катушка как элемент схемы замещения реальной цепи синусоидального тока дает возможность учитывать при расчете явление самоиндукции и явление накопления энергии в ее магнитном поле.

Неразветвленная цепь синусоидального тока Рассмотрим цепь из трех последовательных токоприемников : первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора. Проведем анализ цепи по векторной диаграмме

Пример. Определить действующее значение входного тока по известным токам в параллельных ветвях (риc. 2.15 а) = 3 A; = 1 A; = 5 A. Решение находим по первому закону Кирхгофа

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным. Сущность метода состоит в том, что синусоидальные токи, напряжения и ЭДС изображаются комплексными числами, а геометрические операции над векторами заменяются алгебраическими операциями над комплексными числами. Этот метод позволяет рассчитывать цепи синусоидального тока алгебраически аналогично цепям постоянного тока.

Переходные процессы в электрических сетях Понятие переходного процесса При изучении предыдущего материала рассматривались установившиеся режимы работы электрических цепей с сосредоточенными параметрами, т.е. режимы, которые устанавливаются в цепи при неизменных напряжении, токе, сопротивлении и др.

Комплекс полного сопротивления и комплекс полной проводимости. Законы Кирхгофа в комплексной форме

Электрические цепи с взаимной индуктивностью

Последовательное соединение двух индуктивно связанных катушек

Переходный и свободный процессы Переходный процесс в электрической цепи можно представить в виде двух составляющих: установившегося и свободного.

Включение резистора и катушки на постоянное напряжение

Цепи синусоидального тока Причин отличия кривых токов и напряжений от синусоидальной формы несколько. Во-первых, в генераторах переменного тока кривая распределения магнитной индукции вдоль воздушного зазора из-за конструктивного несовершенства машин может отличаться от синусоиды. Это приводит к возникновению в обмотках несинусоидальной ЭДС.

Магнитное поле и магнитные цепи Ферромагнитные материалы и их магнитные свойства По магнитным свойствам все материалы разделяют на две группы: ферромагнитные (железо, кобальт, никель и их сплавы и др.) и неферромагнитные материалы (все материалы, за исключением ферромагнитных).

Расчет электрических цепей несинусоидального тока Для расчета цепей несинусоидального тока напряжения источника или ЭДС должны быть представлены рядом Фурье. Основывается расчет на принципе наложения, согласно которому мгновенное значение тока в любой ветви равно сумме мгновенных значений токов отдельных гармоник. Расчет выполняют для каждой из гармоник в отдельности с использованием известных методов расчета цепей. Сначала выполняют расчет токов и напряжений, возникающих от действия постоянной составляющей ЭДС, затем – возникающих от действия первой гармоники ЭДС и т.д.

Нелинейные цепи постоянного и синусоидального тока В теории линейных цепей предполагается, что параметры всех сосредоточенных элементов: сопротивление резистора , индуктивность катушки , емкость конденсатора  – являются неизменными, не зависящими от токов и напряжений. Это предположение является идеализацией. В действительности параметры элементов в какой-то степени зависят от тока и напряжения. Поэтому параметры , и допустимо считать неизменными лишь в ограниченных пределах изменения токов и напряжений

Параллельное соединение нелинейных элементов

Схема замещения и векторная диаграмма катушки с ферромагнитным магнитопроводом

Расчет неразветвленных магнитных цепей Первый вариант. Определение МДС по заданному магнитному потоку (задача синтеза, или прямая задача). Исходные данные: геометрические размеры цепи, кривая намагничивания, магнитный поток.

Импульсные цепи В современных электронных устройствах, системах связи, автоматического управления и вычислительной технике информация часто передается в виде электрических импульсов различной формы. В процессе прохождения импульсов через различные цепи и устройства их форма видоизменяется и иногда искажается.

Электрические машины переменного тока Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с угловой скоростью, отличной от угловой скорости поля.

Электромагнитные устройства Трансформаторы Назначение и принцип действия трансформатора Трансформатор представляет собой статический электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты. Трансформатор имеет не менее двух обмоток, у которых есть общий магнитопровод и которые электрически изолированы друг от друга.

Схема замещения трансформатора Электрические цепи с трансформаторами сложно рассчитывать из-за магнитной связи между обмотками. Поэтому трансформатор представляют схемой замещения, в которой магнитная связь заменяется электрической цепью. С этой целью обе обмотки «приводят» к одному числу витков, обычно к числу витков первичной обмотки. Приведенные параметры вторичной цепи обозначают буквами со штрихом.

Внешняя характеристика трансформатора представляет собой зависимость между вторичным напряжением и током нагрузки при заданном первичном напряжении

Мощность потерь и КПД трансформатора

Параллельная работа трансформаторов Параллельное включение силовых трансформаторов применяют для увеличения суммарной мощности и более рационального сочетания мощностей источников питания и потребителей, а также повышения надежности электроснабжения. При параллельной работе к первичным обмоткам трансформаторов подводится одно и то же напряжение, а вторичные обмотки подключаются к общим шинам, от которых питаются потребители

Принцип действия асинхронной машины и режимы ее работы

Энергетический баланс асинхронного двигателя Асинхронный двигатель потребляет из сети активную и реактивную мощность.

Частота вращения магнитного потока ротора Так как в короткозамкнутом роторе каждый стержень (в пазу проводника) образует отдельную фазу, а пазы ротора сдвинуты в пространстве, то сдвинутые по фазе токи в стержнях создают вращающееся магнитное поле.

Пуск и регулирование скорости асинхронного двигателя

Однофазный асинхронный двигатель Принцип действия. Однофазный асинхронный двигатель – двигатель, на статоре которого однофазная обмотка, а на роторе – короткозамкнутая обмотка. Однофазный ток статора создает пульсирующий магнитный поток, изменяющий свое направление с частотой напряжения сети. Этот поток все время направлен по осевой линии полюсов и изменяется во времени по синусоидальному закону. Пульсирующий магнитный поток можно представить в виде двух вращающихся с одинаковой частотой в противоположном направлении потоков, амплитуды которых равны половине амплитуды пульсирующего потока.

 Синхронными машинами называют электрические машины переменного тока, у которых частота вращения ротора находится в строго постоянном соотношении с частотой тока электрической сети.

Индуктивное сопротивление синхронной машины

Параллельная работа синхронного генератора с сетью

Трехфазные выпрямители В трехфазных цепях переменного тока промышленной частоты (50 Гц) в основном используют две схемы выпрямителей: трехфазный выпрямитель с нейтральной точкой и трехфазный мостовой выпрямитель. Трехфазные выпрямители используют как выпрямители средней и большой мощности (средние значения выпрямленного тока достигают сотни ампер).

Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением   Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.  Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением

Механические характеристики электродвигателей постоянного тока  Рассмотрим  двигатель с  параллельным возбуждением в установившемся режиме работ

дорогие проститутки питера, you it that at

На главный раздел сайта: Выполнение курсовой