Решение задач курса начертательной геометрии

Линия наибольшего наклона на плоскости

Для начала представим себе материальную точку  на наклонной плоскости , которая по кратчайшему пути  скатывается на горизонтальную плоскость проекций  (рис.67). Понятно, что линия ската  перпендикулярна линии , по которой пересекаются обе плоскости  и .

Свойства линии ската: Заранее известен вид кривой (второй тип задач) В практике бывает так, что заранее известен вид кривой, получающейся при пересечении поверхности плоскостью, и которая может быть построена при помощи основных элементов, определяющих эту кривую.

1) Линия ската на наклонной плоскости есть линия, наибольшего наклона по отношению к горизонтальной плоскости проекций. (Из неравенства: ).

2) Линия ската (линия наибольшего наклона) определяет угол наклона плоскости к горизонтальной плоскости проекций. (Из определения двугранного угла с учетом теоремы о проецировании прямого угла).

3) Линия ската перпендикулярна к горизонталям  на наклонной плоскости по отношению к плоскости проекций. (Из условия параллельности любой горизонтали по отношению к линии пересечения наклонной плоскости с плоскости горизонтальной проекций:  ).

По аналогии можно говорить о линиях наибольшего наклона относительно и других плоскостей проекций. Алюминиевый стержень круглого поперечного сечения диаметром 10 см растягивается силой F. Найти величину допускаемой силы Fadm, если допускаемое уменьшение начального диаметра =0,002см; коэффициент Пуассона = 0,35.

Пример (Рис.68). Через точку  на плоскости провести линию наибольшего наклона по отношению к фронтальной плоскости проекций .

Понятно, что линия наибольшего наклона к фронтальной плоскости проекций перпендикулярна к фронталям заданной плоскости.

Дано:

,

.

Решение:

1).

2).  

?:  .

 


На главный раздел сайта: Практика выполнения технических чертежей