Дифференциалы высших порядков Интегрирование функций нескольких переменных Mеханические приложения интеграла Длина дуги в декартовых координатах


Выполнение контрольной по математике. Допуск к экзамену

Типовые задачи

Вычислить повторный интеграл , восстановив область .

Решение. Интеграл вычисляется по :  (см. рисунок).

.

Аналогично: 

если область  – правильная в направлении оси , то ее удобно проектировать на ось . Пусть проекция области  на ось  есть отрезок , уравнение левой границы области , а правой границы – . Тогда для всякого  значение  точек  прямой , принадлежащих области , удовлетворяет неравенствам . Поэтому область  можно
задать в виде

 (см. рисунок).

Такому заданию области соответствует повторный интеграл . Для его вычисления находится сначала внутренний интеграл, а затем внешний.
Результат – число!


На главный раздел сайта: Курсовая по математике