Дифференциалы высших порядков Интегрирование функций нескольких переменных Mеханические приложения интеграла Длина дуги в декартовых координатах


Выполнение контрольной по математике. Курсовой зачет

Некоторые механические приложения интеграла ФНП

1. Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

,

если подынтегральная функция , , задает

плотность  линейная распределения поверхностная ()

массы по  объемная ()

в зависимости от размерности фигуры, , ,  
на .

2. Статические моменты и центр масс фигуры

а) Пусть   – плоская фигура на плоскости ,  –
поверхностная плотность распределения массы по . Тогда статический момент "пластины"  относительно некоторой прямой на плоскости  есть интеграл , где  –
расстояние каждой точки "пластины"  до прямой.

В частности, статические моменты "пластины"  относительно оси  и оси  запишутся соответственно

.

Центр масс "пластины"  есть точка  на плоскости  такая, что если в ней поместить массу всей пластины, то ее статистический момент относительно любой оси равен статистическому моменту пластины относительно той же оси, т.е.

,

и отсюда формулы для нахождения координат центра тяжести
пластины :

.

б) Пусть   – фигура ("тело" ) в ;  – объемная плотность распределения массы в теле. Тогда статистические моменты тела относительно всякой плоскости находятся с помощью интеграла

,

где  – расстояние от точки   до плоскости; в частности,
интегралы

определяют статистические моменты "тела"  соответственно до плоскостей , , .

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

Типовые задачи Вычисление  проводится по формуле Ньютона – Лейбница, если известна какая-либо первообразная подынтегральной функции. Если для вычисления первообразной применяется "интегрирование по частям", то эту операцию можно проводить сразу и для определенного интеграла: .

Вычислить интеграл .

Вычисление площади плоской фигуры Площадь фигуры в декартовых координатах Вычислить площадь фигуры, ограниченной линиями  и .

Площадь плоской фигуры в полярных координатах

Вычисление объема тела

Вычислить объем цилиндрического тела, расположенного между плоскостями   и  и ограниченного поверхностью  и плоскостью .

Механические приложения Пластина имеет форму прямоугольника со сторонами длиной   и . Найти массу этой пластины, если ее плотность распределения массы в произвольной точке равна квадрату расстояния от точки до одной из вершин пластины.

Вычисление площади криволинейной поверхности ПРИМЕР. Вычислить площадь частей сферы , лежащих внутри цилиндра .

Вычислить интеграл , где  – призма, ограниченная координатными плоскостями , ,  и плоскостью .

Вычислить интеграл , где   – шаровое кольцо .

Вычислить объем тела, ограниченного эллипсоидом .

Вычисление криволинейных интегралов I рода Вычислить интеграл , если  , , .

Как и для пластины , координаты центра тяжести тела  
находятся по формулам

, т.е.

.

в) Для материальной дуги  и материальной поверхности  с соответствующими функциями  – плотности (линейная и поверхностная) распределения массы по  и  статические моменты и координаты центра тяжести находятся по аналогичным формулам.

Заметим, что центр тяжести дуги, поверхности не всегда расположен на дуге или на поверхности.

Момент инерции фигуры можно вычислять относительно плоскостей, осей координат и начала координат:

,

здесь  есть квадрат расстояния точки , , до
соответствующего объекта. Например, если  или ,  – плотность распределения массы по фигуре , то

 –

моменты инерции материальной фигуры  относительно соответствующей координатной плоскости;

 –

моменты инерции материальной фигуры относительно соответствующей оси координат;

  – момент инерции материальной
фигуры   относительно начала координат.


На главный раздел сайта: Курсовая по математике