Дифференциалы высших порядков Интегрирование функций нескольких переменных Mеханические приложения интеграла Длина дуги в декартовых координатах


Выполнение контрольной по математике. Решение задач

Дифференциалы высших порядков ФНП

Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка. Полный дифференциал функции

в общем случае является функцией переменных  и
приращений , , , . Если предположить, что 1) функция  имеет непрерывные частные производные
второго порядка и 2) для любого  значения  остаются произвольными, но постоянными, то можно рассматривать полный дифференциал от , т.е.  – дифференциал второго порядка исходной функции  в точке  соответственно , , , .

Пусть ,

Тогда . Поэтому

;  – произвольные.

Дифференцируемость ФНП

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной

Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Дифференцирование сложной ФНП Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений Интегрирование функций нескольких переменных.

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Диффенцирование неявно заданной функции

Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Различают несколько постановок задачи на нахождение экстремума ФНП

Исследовать на локальный экстремум .

Абсолютный экстремум ФНП Допустимая точка  называется точкой абсолютного минимума (или максимума) ФНП ,  в задаче (*), если
выполняется условие:   или  .

ПРИМЕР 1. Для функции . Найти ,  при произвольных  и .

Решение. Вычисляем последовательно частные производные  и , а затем , ; . Записываем

,

здесь можно также обозначить , .

Заметим, что если  записать в операторной форме

,

то для дифференциала второго порядка  можно использовать запись

или

,

свернув оператор формально "в квадрат суммы ".

Можно убедиться, что при соответствующих предположениях полный дифференциал третьего порядка  в операторной форме запишется 

или 

.

Например, для  (см. ранее
ПРИМЕР 1) имеем ; ; ; , т.е.

;

здесь ,   – произвольно заданные постоянные.

По аналогии можно записать

  –

полный дифференциал ""-го порядка для функции .

Для функции ,  имеем соответственно

;

;

аналогично

.


На главный раздел сайта: Курсовая по математике